Please accept all cookies to ensure proper website functionality. Set my cookie preferences

For years, the marketing community has worked to establish, sustain, and extend relationships with consumers. Marketers have sought a means to not only understand current consumer behaviors but also to develop well-defined vision for the consumer's future. 

Some 77% of 374 surveyed client-side marketers believe that within the next three years they will need to clearly define customer journeys to better understand and gauge the marketing program focus, according to a recent survey conducted by ANA (Association of National Advertisers).

However, only half of the 77% surveyed have the capabilities to do so today.

As more consumer information becomes available through Big Data, machine learning is the elusive puzzle piece that will enable marketers to complete the picture.

Machine Learning Defined  

Although machine learning might be new tool in the campaign to develop better connections with consumers, it is far from a new business practice. Today, all over the world, machine learning is used daily to improve and expedite routine tasks, such as eliminating spam emails from our inbox and recommending new movies based on our choice. It can even be used to predict the winner of the FIFA World Cup.

Machine learning can be defined as "a subfield of computer science and statistics that deals with the construction and study of systems that can learn data rather than follow only explicitly programmed instructions."

That definition may make machine learning seem too analytical—almost counterintuitive in the effort to forge a better connection with the consumer. However, the opposite is proving true. If Big Data is the 800-pound gorilla in the room, machine learning has become the savvy animal trainer, working to not only understand the beast but also to optimize its performance.

Establishing a connection with the consumer is a mission-critical element in the success of any business... but fostering customer interactions cannot stop there.

Continuously monitoring the customer's engagement signals is equally, if not more, important. Failing to identify or recognize the evolving needs or desires of the customer will likely result in a lost business (i.e., lost customer). For example, marketing maternity clothes to a woman whose baby is now three will not increase her buying habits nor will it extend the retail relationship.

Using Machine Learning for Predictions

When applied to Big Data, machine learning can be used to predict the most effective message to serve to the right person at the right time.

Machine learning works with algorithms to analyze consumer behavior in real time to perform predictive segmentation and adapt the communication experience.

The predictive segmentation and real-time analysis allow for the personalization of messages. Consumer engagement data—such as age, gender, location, and buying preferences—is collected from mobile devices, computers, and smart TVs. In much the same way, the postal service uses machine learning to sort mail by ZIP codes, marketing professionals can use machine learning to "sort" consumers by consumer engagement signals.

Personalized advertisements can then be generated to best address the specific needs or desires of each group in real time. For example, a 20-something living in an urban area, conducting searches for a new car, might receive a coupon for a car insurance service while he scans his options.

Machine learning is key to fully optimizing big data information. When used to analyze Big Data, machine learning can provide marketers and advertisers with the opportunity to quickly adapt to the ongoing evolution of consumer engagement signals.

Multiple factors can affect consumer engagement. Many times, the influences on consumer engagement are driven by current events or temporary circumstances. The quicker the data is "learned" and analyzed, the better.

Machine learning allows for a rapid turnaround of Big Data analysis, which enables marketers to connect with the consumer and deliver personalized ads in a highly timely manner, greatly increasing the effectiveness of the advertisement and helping to drive online and in-store sales.

Major brands (e.g., online retailers, national lenders, and Internet radio providers) have already experienced increased ad effectiveness through the pairing of machine learning and Big Data.

For example, during a two-month campaign, a leading global tire manufacturer showed an average CTR of .32% versus a benchmark of .07% on display ads enabled with machine learning. Conversions on clicks also rose to 2% versus industry averages of 1%. Furthermore, the machine learning technologies helped the tire manufacturer optimize its ad spend based on real-time data collected and analyzed across multiple screens, increasing the company's ROI.

Continue reading "Why Machine Learning Can Help Marketers Connect With Consumers" ... Read the full article

Subscribe today...it's free!

MarketingProfs provides thousands of marketing resources, entirely free!

Simply subscribe to our newsletter and get instant access to how-to articles, guides, webinars and more for nada, nothing, zip, zilch, on the house...delivered right to your inbox! MarketingProfs is the largest marketing community in the world, and we are here to help you be a better marketer.

Already a member? Sign in now.

Sign in with your preferred account, below.


ABOUT THE AUTHOR

image of Shekhar  Deo

Shekhar Deo is co-founder and CTO of EngageClick, a technology integrator that makes advertising personal.

LinkedIn: Shekhar Deo

Marketing Strategy Resources

You may like these other MarketingProfs resources related to Marketing Strategy.

How ABM Automation Can Change Your Sales Process Forever

B2B marketers know they have to treat leads as more than a name on a list, but that can be difficult when conducting ABM at scale. Here are four ways to use automation for ABM.

Creating a Human and Relatable Voice for Your Marketing: Mark Schaefer on Marketing Smarts [Podcast]

Forget about any data or trends before March 2020, argues speaker and author Mark Schaefer. The business world has fundamentally changed, and the winners are companies that can make a personal connection by showing up human.

How to Drive Key-Account Growth With Omnichannel Account-Based Marketing

An omnichannel ABM approach is now considered the most efficient B2B marketing strategy, resulting in higher win rates, shorter sales cycles, and bigger deals. Here's how to make it work for you.

Three Costly Customer Experience Mistakes to Avoid

Where do you start when crafting your organization's CX? It helps to know what errors other companies are making. This article outlines three of the most costly mistakes.

Avoiding the Pitfalls of Reactive Marketing (Article 3 of 3)

In the digital age, it's vital that marketing be highly adaptable. But focusing too much on reactive marketing can throw your plans out of control. Here's how to find the balance between the two.

Top 3 B2B Marketing Predictions for 2022

Is there even a "normal" to go back in 2022? For B2B marketing, likely not, because digitization and changes in customer expectations are here to stay.